Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo
نویسندگان
چکیده
Patterning the dorsal surface of the Drosophila blastoderm embryo requires Decapentaplegic (Dpp) and Screw (Scw), two BMP family members. Signaling by these ligands is regulated at the extracellular level by the BMP binding proteins Sog and Tsg. We demonstrate that Tsg and Sog play essential roles in transporting Dpp to the dorsal-most cells. Furthermore, we provide biochemical and genetic evidence that a heterodimer of Dpp and Scw, but not the Dpp homodimer, is the primary transported ligand and that the heterodimer signals synergistically through the two type I BMP receptors Tkv and Sax. We propose that the use of broadly distributed Dpp homodimers and spatially restricted Dpp/Scw heterodimers produces the biphasic signal that is responsible for specifying the two dorsal tissue types. Finally, we demonstrate mathematically that heterodimer levels can be less sensitive to changes in gene dosage than homodimers, thereby providing further selective advantage for using heterodimers as morphogens.
منابع مشابه
Multistep molecular mechanism for bone morphogenetic protein extracellular transport in the Drosophila embryo.
In the Drosophila embryo, formation of a bone morphogenetic protein (BMP) morphogen gradient requires transport of a heterodimer of the BMPs Decapentaplegic (Dpp) and Screw (Scw) in a protein shuttling complex. Although the core components of the shuttling complex--Short Gastrulation (Sog) and Twisted Gastrulation (Tsg)--have been identified, key aspects of this shuttling system remain mechanis...
متن کاملBiphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region.
The BMP pathway patterns the dorsal region of the Drosophila embryo. Using an antibody recognizing phosphorylated Mad (pMad), we followed signaling directly. In wild-type embryos, a biphasic activation pattern is observed. At the cellular blastoderm stage high pMad levels are detected only in the dorsal-most cell rows that give rise to amnioserosa. This accumulation of pMad requires the ligand ...
متن کاملPhysical properties of Tld, Sog, Tsg and Dpp protein interactions are predicted to help create a sharp boundary in Bmp signals during dorsoventral patterning of the Drosophila embryo.
Dorsal cell fate in Drosophila embryos is specified by an activity gradient of Decapentaplegic (Dpp), a homologue of bone morphogenetic proteins (Bmps) 2/4. Previous genetic and biochemical studies have revealed that the Sog, Tsg and Tld proteins modify Dpp activity at the post-transcriptional level. The predominant view is that Sog and Tsg form a strong ternary complex with Dpp that prevents i...
متن کاملDpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo.
The dorsal ectoderm of the Drosophila embryo is subdivided into different cell types by an activity gradient of two TGF(&bgr;) signaling molecules, Decapentaplegic (Dpp) and Screw (Scw). Patterning responses to this gradient depend on a secreted inhibitor, Short gastrulation (Sog) and a newly identified transcriptional repressor, Brinker (Brk), which are expressed in neurogenic regions that abu...
متن کاملProcessing of the Drosophila Sog protein creates a novel BMP inhibitory activity.
Structurally unrelated neural inducers in vertebrate and invertebrate embryos have been proposed to function by binding to BMP4 or Dpp, respectively, and preventing these homologous signals from activating their receptor(s). In this study, we investigate the functions of various forms of the Drosophila Sog protein using the discriminating assay of Drosophila wing development. We find that misex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 121 شماره
صفحات -
تاریخ انتشار 2005